

مرکــــز الـنشـــر العـلمـــي Center for Scientific Publications

CRISPR / CAS9

Revolutionizing the biological arena

Prof. Hussein Sabit Dr. Amany Alqosaibi

frist Edition 2020

CRISPR/CAS9: Revolitionizing the biological arena

1st edition, 2020

By

Prof. Hussein Sabit

Dr. Amany Alqosaibi

© IMAM ABDULREHMAN BIN FAISAL UNIVERSITY, 2020

King Fahd National Library Cataloging-in-Publication Data

Sabit, Hussein CRISPR/Cas9: Revolutionizing the Biological Arena/ Hussein Sabit; Amany Alqosaibi- Dammam, 2020 208p; 17×24 cm ISBN: 978-603-91521-4-9 1- Biological Science. I-Amany Alqosaibi (co-author) II-Title 610.76 dc 1442/3233 L.D. no. 1442/3233 ISBN: 978-603-91521-4-9

Republishing or copying this book in any way (electronically or mechanically) including photocopying, storing, and retrieving is not allowed without a written permission.

This book is approved for publication by the scientific council in the Imam Abdulrahman Bin Faisal University in its 74th session dated 11/1/1441H after being reviewed and edited by an accredited and authorized committee.

TABLE OF CONTENT

List of Figures	i
List of Abbreviations	iii
Introduction	9
Chapter 1	18
Chapter 2	52
Chapter 3	73
Chapter 4	120
Chapter 5	147
Glossary	156
References	176

LIST OF FIGURES

Fig. 1:	Meganucleases works by cutting DNA at specific sites to generate double strand breaks.	23
Fig. 2:	How ZFN works by cutting DNA at specific sites to generate double strand breaks.	25
Fig. 3:	TAL effector repeats and the binding of RVD to a specific base in the DNA sequence. H: Histidine and D: Aspartate.	26
Fig. 4:	The CRISPR location within the bacterial chromosome, and how bacteria acquire the spacer from the invader.	32
Fig. 5:	The cycle of viral invasion and how CRISPR/Cas9 works.	34
Fig. 6:	The repeats and spacers where they are in the CRISPR locus.	37

Fig. 7:	Cpf1 endonucleases requires only	41
	crRNA to cut the target DNA.	
Fig. 8:	The main components of CRISPR	44
	system.	
Fig. 9:	The components of CRISPR/dCas9	49
	system.	
Fig. 10:	The main application areas of	76
	CRISPR/Cas9t technology.	
Fig. 11:	Example of using CRISPR to cure	85
	human cancer. The figure shows	
	what happens in the case of	
	Leukemia.	
Fig. 12:	How mutated and normal CFTR	90
	proteins work.	
Fig. 13:	A Schematic representation for	100
	gene drive action.	

LIST OF ABBREVIATIONS

Abbreviation	Acronym
AMR	Ampicillin Resistance Gene
BGI	Beijing Genomics Institute
CAR	Chimeric Antigen
CASFISH	CRISPR/Cas9-Mediated Fluorescent in
	Situ Hybridization
CF	Cystic Fibrosis
CFTR	Cystic Fibrosis Transmembrane
	Conductance Regulator
CRISPR	Clustered Regularly Interspaced Short
	Palindromic Repeats
DMD	Duchenne Muscular Dystrophy
DNA	Deoxyribonucleic Acid
DSB	Double Strand Break
EBV	Epstein-Barr Virus
EGFP	Enhanced Green Fluorescent Protein
FDA	Food and Drug Administration
FISH	Fluorescence in Situ Hybridization
FSGS	Focal Segmental Glomerulosclerosis

GESTALT	Genome Editing of Synthetic Target
	Arrays for Lineage Tracing
GHR	Growth Hormone Receptor
GMO	Genetically Modified Organisms
HD	Huntington Disease
HDR	Homology-Directed Repair
HIV	Human Immunodeficiency Viruses
HNH	Histidine-Asparagine-Histidine
HPV	Human Papilloma Virus
НТТ	Gene Encodes for Huntingtin
IHF	Integration Host Factor
IVF	In Vitro Fertilization
MGE	Mobile Genetic Element
NHEJ	Non-Homology End Joining
NIH	National Institutes of Health
PAM	Protospacer Adjacent Motif
PARP	Poly (ADP-Ribose) Polymerase
PCR	Polymerase Chain Reaction
PD	Parkinson Disease
PGD	Preimplantation Genetic Diagnosis
PKD	Polycystic Kidney Disease
	RNA Editing for Programmable A to I
	Replacement
RVD	Repeat Variable Diresidue
SAHA	Suberanilohydroxamic Acid
SCID	Severe Combined Immunodeficiency

SDN	Site-Directed Nuclease
SNP	Single Nucleotide Polymorphism
TAL	Transcription Activator-Like Effector
TALEN	Transcription Activator-Like Effector
	Nucleases
TF	Transcription Factor
TIDE	Tracking of Indels By Decomposition
XCI	X Chromosome Inactivation
ZFN	Zinc Finger Nuclease

CRISPR/CAS9 IS THE FUTURE TECHNOLOGY THAT IS GOING TO CHANGE THE FACE OF THE BIOLOGICAL ARENA. CRISPR/ CAS9 CAN BE USED IN VARIOUS FIELDS THAT INCLUDE -BUT NOT LIMITED TO- MEDICAL, AGRICULTURE, INDUSTRIAL, AND ENVIRONMENTAL APPLICATIONS. EMERGED IN THE MID-2013, THIS TECHNOLOGY ENABLES SCIENTISTS TO EASILY AND STRAIGHTFORWARDLY CUT AND PASTE GENES FROM DIFFERENT ORGANISMS, BREAKING THE BIOLOGICAL BARRIERS KNOWN FOR DECADES. MAJOR ACHIEVEMENTS HAVE BEEN INTRODUCED SO FAR, AND THE FUTURE WILL ENCOUNTER A GREAT DEAL OF OTHER HUMAN WELL-BEING-RELATED ADVANCEMENTS. ONE THE OTHER HAND, CRISPR/CAS9 TECHNOLOGY SHOULD BE HANDLED WITH MUCH CARE IN ORDER NOT TO DISRUPT THE BIOLOGICAL AND ECOLOGICAL BALANCE ON EARTH. THIS BOOK HIGHLIGHTS THE MAIN CONCEPTS OF CRISPR TECHNOLOGY ALONG WITH ITS UNIQUE APPLICATION IN DIFFERENT FIELDS OF BIOLOGICAL SCIENCES.

> مركز النشر العلمي - المملكة العربية السعودية صـنـدوق بـريـد: 1982 الـرمـز البـريـدي: 1944 البريد الإلكتروني : PUBLISHER@IAU.EDU.SA الموقع الإلكتروني : WWW.IAU.EDU.SA

جامعة البما & عبد الرحمن بن فيصل IMAM ABDULRAHMAN BIN FAISAL UNIVERSITY وكالة الجامعة للدراسات العليا والبحث العلمي Vice Presidency for Postgraduate Studies and Scientific Research

L.D N.O. 1442/3233

ISBN: 978-603-91521-4-9